
Driving with LLMs: Fusing Object-Level Vector
Modality for Explainable Autonomous Driving

Long Chen∗ Oleg Sinavski∗ Jan Hünermann Alice Karnsund
Andrew James Willmott Danny Birch Daniel Maund Jamie Shotton

Wayve
research@wayve.ai

∗equal contributions

Abstract

Large Language Models (LLMs) have shown promise in the autonomous driving
sector, particularly in generalization and interpretability. We introduce a unique
object-level multimodal LLM architecture that merges vectorized numeric modali-
ties with a pre-trained LLM to improve context understanding in driving situations.
We also present a new dataset of 160k QA pairs derived from 10k driving scenarios,
paired with high quality control commands collected with RL agent and question
answer pairs generated by teacher LLM (GPT-3.5). A distinct pretraining strategy
is devised to align numeric vector modalities with static LLM representations
using vector captioning language data. We also introduce an evaluation metric for
Driving QA and demonstrate our LLM-driver’s proficiency in interpreting driving
scenarios, answering questions, and decision-making. Our findings highlight the
potential of LLM-based driving action generation in comparison to traditional
behavioral cloning. We make our benchmark, datasets, and model available 1 for
further exploration.

1 Introduction

Figure 1: An overview of the architecture for Driving with LLMs, demonstrating how object-level
vector input from our driving simulator is employed to predict actions via LLMs

1https://github.com/wayveai/Driving-with-LLMs

Preprint. Under review.

ar
X

iv
:2

31
0.

01
95

7v
2

 [
cs

.R
O

]
 1

3
O

ct
 2

02
3

Remarkable abilities of Large Language Models (LLMs) demonstrate early signs of artificial general
intelligence (AGI) [1], exhibiting capabilities such as out-of-distribution (OOD) reasoning, common
sense understanding, knowledge retrieval, and the ability to naturally communicate these aspects with
humans. These capabilities align well with the focus areas of autonomous driving and robotics [2]
[3].

Modern scalable autonomous driving systems, whether they adopt an end-to-end approach using
a single network [4], or a component-based configuration that combines learnable perception and
motion planning modules [5] [6], face common challenges. These systems often behave as ’black-
boxes’ in the decision making process, making it especially difficult to endow them with OOD
reasoning and interpretability capabilities. Such issues persist even though there have been some
strides towards addressing them [7].

Textual or symbolic modality, with its inherent suitability for logical reasoning, knowledge retrieval,
and human communication, serves as an excellent medium for harnessing the capabilities of LLMs
[8]. However, its linear sequential nature limits nuanced spatial understanding [1], a crucial aspect of
autonomous navigation. Pioneering work in Visual Language Models (VLMs) has begun to bridge
this gap by merging visual and text modalities [9], enabling spatial reasoning with the power of pre-
trained LLMs. However, effectively incorporating the new modality into the language representation
space requires extensive pretraining with a significant volume of labeled image data.

We propose a novel methodology for integrating the numeric vector modality, a type of data that is
frequently used in robotics for representing speed, actuator positions and distance measurements,
into pre-trained LLMs. Such modality is considerably more compact than vision alleviating some of
the VLM scaling challenges. Specifically, we fuse vectorized object-level 2D scene representation,
commonly used in autonomous driving, into a pre-trained LLM with adapters [10]. This fusion
enables the model to directly interpret and reason about comprehensive driving situations. As a result,
the LLMs are empowered to serve as the “brain“ of the autonomous driving system, interacting
directly with the simulator to facilitate reasoning and action prediction.

To obtain training data in a scalable way, we first use a custom 2D simulator and train a reinforcement
learning (RL) agent to solve the driving scenarios, serving as a substitute for a human driving expert.
To ground the object-level vector into LLMs, we introduce a language generator that translates this
numerical data into textual descriptions for representation pretraining. We further leverage a teacher
LLM (GPT) to generate a question-answering dataset conditioned on the language descriptions of
10k different driving scenarios. Our model first undergoes a pretraining phase that enhances the
alignment between the numeric vector modality and the latent language representations. Next, we
train our novel architecture to establish a robust baseline model, LLM-driver, for the driving action
prediction and driving question answering tasks. We provide our datasets, evaluation benchmarks
and a pre-trained model1 for reproducibility and hope to inspire and facilitate further advancements
in the field. The subsequent sections of this paper detail the theoretical background, our proposed
architecture and experimental setup, preliminary results, potential directions for future research, and
implications of our work for the broader field of autonomous driving.

In this paper, we have made the following contributions:

1. Novel object-level multimodal LLM architecture: We propose a novel architecture
that fuses an object-level vectorized numeric modality into any LLMs with a two-stage
pretraining and finetuning method.

2. Driving scenario QA task and a dataset: We provide a 160k question-answer pairs dataset
on 10k driving situations with control commands, collected with RL expert driving agents
and an expert LLM-based question answer generator. Additionally, we also outline the
methodology for further data collection.

3. Novel Driving QA (DQA) evaluation and a pretrained baseline: We present a novel way
to evaluate Driving QA performance using the same expert LLM grader. We provide initial
evaluation results and a baseline using our end-to-end multimodal architecture.

Our work provides the first-of-its-kind baseline approach for integrating LLMs into driving task
in simulation. This includes a comprehensive framework encompassing the simulator, automatic
data collection, integration of a new object-level vector modality into LLMs, and the GPT-based
evaluations approaches.

2 Related Works

2.1 End-to-End Autonomous Driving Systems

There was a significant progress in end-to-end deep learning methods for autonomous systems in
recent years [11], [12], [4], with some of the earliest efforts dating back to ALVINN [13] and more
recent works such as [14]. However, a fundamental challenge that remains with modern autonomous
driving systems is the lack of interpretability in the decision making process [15]. Understanding
why a decision is made is crucial for identifying areas of uncertainty, building trust, enabling effective
human-AI collaboration and ensuring safety [16]. We continue this line of research by adding
vector/textual modality and pretrained LLMs to the end-to-end autonomous driving.

2.2 Interpretability of Autonomous Driving Systems

A variety of explainability methods have been introduced [17] to understand the underlying decision
process of deep neural networks. For example [18], [19] and [20] are well-established model-agnostic
interpretability methods that generate explanations for individual predictions. Other methods such as
gradient based [21], saliency maps [22] and attention maps [23] target the inner operations of models
to explain the decision making process. In the field of autonomous vehicles, visual attention maps,
which highlight causally influential regions in driving images were proposed in [24]. In [25] the
authors combined attention based methods with natural language to create an attention-based vehicle
controller that provides natural language action descriptions and explanations based on a series of
image frames. This work was further extended in [26], where the authors improved the architecture
by integrating part of speech prediction and special token penalties. Others argue that attention
is not enough [27], leading to multiple efforts to combine this approach with other explanatory
methods. For example [28] proposes to explain transformers by leveraging attentive class activation
tokens, encoded features, their gradients, and their attention weights simultaneously. Building on this
research, we are proposing to use text modality for explainability in autonomous driving.

2.3 Multi-modal LLMs in Driving Tasks

Recently, there has been a notable trend towards integrating multiple modalities into unified large-
scale models. Notable examples include VLMs such as [29], [30], [31], and [32], which effectively
combine language and images to accomplish tasks like image captioning, visual question answering,
and image-text similarity. Another noteworthy advancement [33] involves the fusion of information
from six distinct modalities: text, image/video, audio, depth, thermal, and inertial measurements.
This exciting development not only expands the possibilities for generating content using diverse
data input and output types but also enables broader multi-modal search capabilities.

With camera sensors being one of the most common sensors used in autonomous driving [34], a
natural step to incorporate language has been through VLMs. For example [35] uses images and
language directions to train a driving policy. [36] proposes a method for learning vehicle control with
human assistance. The system learns to summarize its visual observations in natural language, predict
an appropriate action response (e.g. “I see a pedestrian crossing, so I stop”), and predict the controls,
accordingly. Using language to explain the inner workings of the model has also been explored in
[37], where user-friendly natural language narrations and reasoning are provided for each decision
making step of autonomous vehicular control and action.

In robotics, we have seen efforts fusing language with other modalities. Albeit outside of autonomous
driving field, the closest work to ours [38] utilizes point clouds with 3D bounding boxes of potential
object candidates. It also uses a language utterance referring to a target object in the scene to train a
model capable of identifying a target object from a set of potential candidates. Recently, the RT-2
paper [39] demonstrated a similar approach by utilizing LLMs for low-level robotics control tasks,
including the joint training of VQA and control tasks. However, their framework is confined to the
vision modality, whereas we introduce a novel methodology for grounding vector-based object level
modalities into LLMs, facilitating interpretable control and driving QA tasks. In contrast to these
existing efforts, the work presented in this paper is, to the best of our knowledge, the first to fuse
numeric vector modality with language specifically in the domain of autonomous vehicles.

3 Method

Figure 2: The illustration of our Driving QA Dataset automatic labelling process

3.1 Data Collection using RL experts

To generate language-based grounded driving datasets, we use a custom-built realistic 2D simulator
with procedural generation of driving scenarios. We use an RL agent that solves the simulated
scenarios using an object-level ground-truth representation of the driving scene. In our approach, we
map a vector representation of the environment to an action for the vehicle dynamics with an attention-
based neural network architecture. This model is optimized with Proximal Policy Optimization (PPO)
[40]. Subsequently, we collect continuous driving data from 15 diverse virtual environments with
randomly generated traffic conditions. Our collection includes a 100k dataset for pretraining, a 10k
set for QA labeling and fine-tuning, and a 1k set dedicated to evaluation.

3.2 Structured Language Generation for Pseudo Vector Captioning

In our framework, we aim to convert vector representations into language using a structured language
generator to facilitate the grounding the vector representation into LLMs. Since our object-level
vectors contain semantically significant attributes, such as the number of cars and pedestrians, their
respective locations, orientations, speeds, bounding boxes and other attributes, we employ a structured
language generator (lanGen) function to craft pseudo-language labels derived from the vector space,
as illustrated below:

lanGen(vcar, vped, vego, vroute, [orl]) →

“A moving car; Angle in degrees: 1.19; Distance: 9.98m; [My attention: 78%]
A pedestrian; Angle in degrees: -41.90; Distance: 11.94m; [My attention: 22%]
My current speed is 11.96 mph.
There is a traffic light and it is red. It is 12.63m ahead.
The next turn is 58 degrees right in 14.51m.

[Here are my actions:]
[- Accelerator pedal 0%]
[- Brake pedal 80%]
[- Steering straight]

”
In this function, variables vcar, vped, vego, and vroute denote vector information corresponding to cars,
pedestrians, ego vehicle, and route, respectively. The optional term orl represents the output from
the RL agent, consisting of additional attention and action labels for guiding the action reasoning
process. Attention labels are collected from RL policy attention layers similar to [41].

This lanGen enables the transformation of vector representations into human-readable language
captions. It crafts a comprehensive narrative of the current driving scenario, which includes of the
agent’s observations, the agent’s current state, and its planned actions. This comprehensive contextual
foundation enables the LLMs to conduct reasoning and construct appropriate responses in a manner
that humans can interpret and understand.

The inclusion of orl is optional, and we generate two different versions of pseudo labels to cater
to different requirements: 1) Without Attention/Action: Employed during the representation pre-
training stage (see Subsection 3.4.1), where the inference of attentions and actions is not required.
2) With Attention/Action: Utilized for VQA labeling with GPT during the fine-tuning stage (see
Subsection 3.4.2). This equips GPT with the ability to ask specific questions about attentions and
actions, thereby empowering the driving LLM agent with the ability to reason about attentions and
actions.

3.3 Driving QA Dataset Labeling

Large amount of data is the key to enabling the question answering ability of the language models.
This becomes particularly crucial when a new modality is introduced to the LLMs; in such circum-
stances, it is essential to have a high-quality question-answering dataset relevant to the modality
input. Studies have demonstrated that data labelled using ChatGPT surpasses crowdsourced workers
in terms of performance for text-annotation tasks [42]. Inspired by Self-Instruct [43] and LLaVA
[44], we utilize GPT to generate a Driving QA dataset. This dataset is conditioned on the structured
language input, serving as a representative for the vectors.

To be specific, we tasked GPT to emulate the role of a certified professional driving instructor to
generate questions and answers for students. We supplied basic driving rules as pre-prompts, covering
aspects like traffic signal transitions and the driving side as we are operating in a left-hand driving
country. We tasked GPT with creating 16 sets of random questions and answers per scenario, taking
into account the current driving scenario provided by language description generated by the lanGen.
We also included some instructions to guide the generation of action-related questions, so that they
can be easily parsed with regular expressions for evaluating action prediction tasks.

To reduce hallucinations, we established simple guardrail rules. We instructed GPT to include a
driving-related question that could not be inferred from the observation input. If faced with such a
question, the model’s response should be akin to "I’m unable to answer this question based on the
observations I have," preventing the model from imagining objects not present in the provided vector
observation.

Additionally, we included a random question unrelated to driving, instructing the model to respond
with "As an AI Driver, the question you asked is out of my scope, but I can attempt to answer it." The
model would then proceed to answer the question normally, thereby preserving the language model’s
versatility as a general-purpose assistant.

Detailed instructions can be found in our open-sourced code1. Below are some examples of the
question-answer pairs generated by GPT:

• Question: "What objects are you observing?" Answer: "I’m observing a moving car, and
two pedestrians. The car is coming from the opposite direction, and the pedestrians are
crossing the street from both the right and left sides."

• Question: "How are you going to drive in this situation and why?" Answer: "Here are my
actions: - Accelerator pedal 0% - Brake pedal 7% - Steering straight. Reason: Because I’m
maintaining a slow speed due to the pedestrians crossing, and I’m steering straight to keep
our vehicle properly aligned with the road."

• Question: "What are the best tourist spots in London?" Answer: "As an AI Driver, the
question you asked is out of my scope, but I can try to answer it. Some famous tourist spots
in London include the Tower of London, Buckingham Palace, The British Museum, The
Shard, and the London Eye."

3.4 Training the Driving LLM Agent

Training the LLM-Driver involves formulating it as a Driving Question Answering (DQA) problem
within the context of a language model. The key to this formulation is the integration of an object-level
vector modality into the pre-trained LLMs, creating a multi-modal system capable of interpreting and
interacting with both language and vector inputs.

We use a two-stage process to train our model for effectively fusing object-level vector modality into
the LLM-Driver. In the first stage, we ground the vector representation into an embedding that can

Figure 3: The architecture of the Driving LLM Agent

be decoded by the LLMs. This is accomplished by freezing the language model and optimizing the
weights of the vector encoders and the vector transformer. In the second stage, we finetune the model
to the DQA task, training it to answer driving-related questions and take appropriate actions based on
its current understanding of the environment.

As can be seen in the Figure 3, our model is built on three key components: the Vector Encoder,
Vector Former, and a frozen LLM with a Low-Rank Adaptation (LoRA) [10] module.

• Vector Encoder: The four input vectors are passed through the Multilayer Perceptron (MLP)
layers. They’re then processed by a cross-attention layer to move them into a latent space.
We add the ego feature to each learned input latent vector to emphasize the ego states.

• Vector Former: This part contains self-attention layers and a cross-attention layer that
work with the latent space and question tokens. This transforms the latent vectors into an
embedding that the LLM can decode.

• LLM with Adaptor: Here, we inject trainable rank decomposition matrices (LoRA) into
the linear layers of the pretrained LLMs for parameter-efficient finetuning. We utilize
LLaMA-7b [45] as the pretrained LLM for our experiments.

3.4.1 Vector Representation Pre-training

Integrating a new modality into pre-trained Large Language Models (LLMs) poses significant
challenges due to the need for extensive data and computational resources. In this study, we propose
a novel approach that leverages structured language to bridge the gap between the vector space and
language embeddings, particularly focusing on numerical tokens.

During the pretraining phase, we freeze the language model while training the entire framework
end-to-end to optimize the weights of the vector encoders and the vector transformer (V-former). Such
an optimization process enables effective grounding of the vector representation into an embedding
that can be directly decoded by the LLMs. It is important to note that during this pretraining phase,
we use only perception structured-language labels and avoid training on tasks that involve reasoning,
such as action prediction (vehicle control commands) and agent attention prediction (where the expert
focuses spatial attention). This is because our focus at this stage is solely on representation training,
and we aim to avoid prematurely integrating any reasoning components into the V-former.

The pretraining process was conducted using 100k question-answer pairs, which were collected from
a simulator. Additionally, in each epoch, we sampled 200k vectors with uniformly-distributed random
values, contributed to robust representation learning by comprehensively exploring the vector space
and its associated semantic meanings. We employed the lanGen method, as described in Sections 3.2,

to automatically label the pseudo vector-captioning data. During the pretraining phase, we penalized
errors in vector captioning results to optimize the vector encoder and V-former weights, thereby
transforming the vector space into language embeddings understandable by LLM.

Through this approach, we are able to effectively incorporate object-level vector modality into
pre-trained LLMs, which serves as a good starting point for the finetuning stage.

3.4.2 Driving QA Finetuning

After the pre-training stage, we integrate the trainable LoRA module into the LLM, and optimize the
weights of the Vector Encoder, Vector Former and LoRA module in an end-to-end fashion on the
Driving QA data that we collected in Section 3.3.

In order to train the LLM-Driver to output accurate actions for driving, we added certain action-
triggering questions to the VQA dataset. These are questions that, when asked, require the agent to
generate actions in specific format. For example, a question like "How are you going to drive in this
case and why?" would require the agent to infer the action based on the vector input. We then use a
simple language-action grounding strategy with regular expression matching to extract the action
required to control the car in our simulator. To ensure the model pays sufficient attention to these
important questions, we upsample the action-triggering questions with different expressions such as:

• "How are you going to drive in this situation?"
• "What actions are you taking?"
• "How are you driving in this situation?"
• "What are your planned actions for this situation?"

We refine the pre-existing model on 10,000 scenarios, each incorporating 16 driving QA entities,
along with an additional vector for captioning data and an action prediction QA pair. The outcome is a
driving LLM agent that is capable of reasoning about its actions and responding to any driving-related
questions given the object-level vectors of the current driving scenario.

4 Evaluation and Results

This section aims to thoroughly assess our model’s performance using a separate evaluation set
comprising 1,000 distinct driving scenarios. The vector captioning and vector QA data for these
scenarios were labeled following the same methodologies discussed in Sections 3.2 and 3.3.

4.1 Evaluation of Perception and Action Prediction

Figure 4: Demonstration of the interaction with the pretrained LLM-Driver. Notably, the driving
LLM agent has the ability to anticipate future actions when prompted. Please refer to Appendix B for
additional results, including some failure cases.

To obtain the model’s perception and action predictions, we prompt the model with the same vector
captioning and add the action-predicting triggering question from the driving QA data. We then parse
the language output using regular expressions to extract the numerical predictions.

We reported the results on the model trained using a two stage approach (with pretraining), and
the model training only on driving QA dataset (without pretraining). We also include a baseline

model, Perceiver-BC, which replaces the LLM with a non-pretrained Perceiver model for comparison
purposes. This aims to evaluate how effectively pretrained LLMs can be utilized for reasoning in
driving-related tasks, such as action prediction. The Perceiver-BC model includes the identical Vector
Encoder and V-former modules as those in the LLM agent model. However, it differs in the fact that
it employs a transformer-based policy module in place of the LLM with adapters (please refer to
Appendix A for more details). The Perceiver-BC model also outputs actions with perception auxiliary
tasks of agent and traffic light detection. To maintain an equitable comparison, we’ve calibrated
the BC model to have a similar number of trainable parameters as in the LLM agent, totaling to
approximately 25 million trainable parameters. The Perceiver-BC model was trained on perception
and action prediction tasks using the same 10k dataset that we used for the LLM Agent, but without
VQA data.

For the reported metrics, we calculate the Mean Absolute Error (MAE) for the predictions of the
number of cars and pedestrians, denoted as Ecar and Eped respectively. Additionally, we measure
the accuracy of traffic light detection as well as the mean absolute distance error in meters for traffic
light distance prediction, represented as AccTL and DTL. Furthermore, we compute the MAE for
normalized acceleration and brake pressure denoted as Elon., and normalized steering wheel angle
denoted as Elat.. Lastly, we report the weighted cross-entropy loss for the token prediction on the
evaluation set, indicated as Ltoken.

Table 1: The evaluation result of perception and action prediction

agents count traffic light action loss

Ecar ↓ Eped ↓ AccTL ↑ DTL ↓ Elon. ↓ Elat. ↓ Ltoken ↓

Perceiver-BC[46] 0.869 0.684 0.900 0.410 0.180 0.111 n/a

LLM-Driverw/o pretrain 0.101 1.668 0.758 7.475 0.094 0.014a 0.644
LLM-Driverw/ pretrain 0.066 0.313 0.718 6.624 0.066 0.014b 0.502
a Exact value: 0.01441
b Exact value: 0.01437

As can be seen in Table 1, the results clearly demonstrate that the pretraining stage significantly
enhances both the model’s perception and action prediction capabilities. This suggests that the
pretrained model exhibits a higher level of accuracy in perceiving and quantifying the number of
cars and pedestrians in its environment. The pretrained model also shows a lower loss value, Ltoken,
which indicates an improvement in the overall effectiveness of the model’s token predictions.

Note that we filter out agents that fall outside the 30m range from the ego vehicle, which needs to be
calculated using the x, y, z vector. This setting makes the "direct decoding" of agent detection from
the vector much more difficult. For simpler regression tasks (e.g., traffic light distance), Perceiver-BC
performs much better than LLMs.

For the action prediction task requiring in-depth reasoning, we found that LLM-based policies
outperform the Perceiver-BC approach when given the same amount of training data and trainable
parameters. This indicates that LLMs serve as effective action predictors, harnessing knowledge
acquired during the general pretraining phase**—such as stopping at a red light or decelerating when
vehicles or pedestrians are ahead—**to inform decisions based on their grounded observations.

However, it’s important to note the distinction in training methodologies: Perceiver-BC is trained
mostly using regression on perception and control outputs, while LLMs are trained via cross-entropy
token loss and benefit from an extra 16x pairs of driving questions and answers, which will reinforces
the learning of perception and action prediction. Thus, the comparison might not be entirely equitable
and should be taken as merely a point of reference.

4.2 Evaluation of Driving QA

To assess the quality of answers to open-ended questions about the driving environment, we use
GPT-3.5 to grade our model’s responses. This is a recently emerged technique for grading natural

language answers [47] [48] [49]. This approach allows us to quickly and consistently evaluate our
model’s capabilities for questions that don’t have fixed answers.

For evaluation, we prompt GPT-3.5 with the language-based observation description used during
dataset generation (section 3.3), the question from the test set, and the model’s answer. GPT’s task is
to write a one-line assessment, followed by a score ranging from 0 to 10 (where 0 is worst and 10 is
best) for each response, based on the given observation details. The final score of the model is the
average of all question scores. We note that GPT evaluations can sometimes be overly lenient with
answers that are incorrect but semantically close, as well as other issues with GPT-based grading as
reported by [49]. To validate these findings, we hand-scored 230 randomly sampled QA pairs and
obtained comparable results.

Table 2: Grading of the Driving QA outputs

GPT Grading ↑ Human Grading ↑

Constant answer "I don’t know" 2.92 0.0
Randomly shuffled answers 3.88 0.26

LLM-Driverw/o pretrain 7.48 6.63
LLM-Driverw pretrain 8.39 7.71

Answers generated by GPT 9.47 9.24

Our results in Table 2 demonstrate that pre-training improves the grading score of the model by
9.1% and 10.8% over those models without pre-training, according to both GPT grading and human
grading. For reference, we also provide the scores obtained when running our evaluation procedure
with artificially incorrect answers (by either constantly answering "I don’t know" or by randomly
shuffling all answers), as well as the "ground-truth" answer labels provided by GPT. From these
results, we can see that our model, which utilizes only vectorized representations as input, can achieve
a much higher score than either a constant or random answer approach.

5 Conclusion and Limitations

While our approach exhibits considerable novelty and potential, the preliminary results indicate
that there is still progress to be made for the LLM to fully navigate in simulation. We are aware of
possible discrepancies in open-loop vs closed-loop results [50], and our future work will focus on
addressing the challenge of efficiently evaluating the model in a closed-loop system. This includes
addressing the lengthy inference time of LLMs and the extensive steps needed to thoroughly test the
system. Moreover, we anticipate the need to improve the precision of the direct driving commands
produced by our baseline in order to operate effectively in closed-loop settings. Factors contributing
to this include the intricacy of the task, potential enhancements to the model architecture, and the
need for improving the scale and quality of our training dataset. We have observed that numeric
inaccuracies and the early developmental stage of our system can lead to discrepancies in explanations
and reasoning, preventing our ideas from being fully implemented in closed-loop settings. These
observations will guide our future research as we continue to refine our approach.

Nevertheless, our work establishes a foundation for future research in this direction. We believe that
our proposed architecture, combined with the novel way for grounding a new modality into LLMs,
a data auto-labelling pipeline, and an LLM-based evaluation pipeline, can serve as a starting point
for researchers interested in exploring the integration of numeric vector modality with LLMs in the
context of autonomous driving.

In terms of future research, improving the architecture to better handle nuances in the numeric vector
modality could offer a promising direction. Our approach holds potential for application beyond
simulated environments. Given sufficient real-world perception labels for pretraining and fine-tuning
a VLM, our methodology could also be adapted to real-world driving scenarios.

Overall, while our results are preliminary we believe our work is a significant step forward in the
integration of vector modality with LLMs in the context of autonomous driving.

6 Ethical Implications and Broader Impact

By introducing LLMs into autonomous driving we are inheriting their ethical implications [51]. We
believe that these problems will be addressed by further research from the LLM community. As for
autonomous driving, it’s crucial to ensure that the system can handle all possible driving scenarios
safely. By improving the interpretability of autonomous driving systems, we can help build trust in
this technology, thereby accelerating its adoption and ultimately leading to safer and more efficient
transportation systems.

References
[1] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T. Lee,

Y. Li, S. Lundberg, H. Nori, H. Palangi, M. T. Ribeiro, and Y. Zhang, “Sparks of artificial
general intelligence: Early experiments with gpt-4,” 2023.

[2] L. Wells and T. Bednarz, “Explainable ai and reinforcement learning—a systematic review of
current approaches and trends,” Frontiers in artificial intelligence, vol. 4, p. 550030, 2021.

[3] K. Lu, S. Zhang, P. Stone, and X. Chen, “Robot representation and reasoning with knowledge
from reinforcement learning,” 2018.

[4] J. Hawke, V. Badrinarayanan, A. Kendall, et al., “Reimagining an autonomous vehicle,” arXiv
preprint arXiv:2108.05805, 2021.

[5] L. Chen, L. Platinsky, S. Speichert, B. Osiński, O. Scheel, Y. Ye, H. Grimmett, L. Del Pero,
and P. Ondruska, “What data do we need for training an av motion planner?” in 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 2021, pp. 1066–1072.

[6] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of deep learning techniques
for autonomous driving,” Journal of Field Robotics, vol. 37, no. 3, pp. 362–386, 2020. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21918

[7] D. Omeiza, H. Webb, M. Jirotka, and L. Kunze, “Explanations in autonomous driving:
A survey,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 8, pp.
10 142–10 162, aug 2022. [Online]. Available: https://doi.org/10.1109%2Ftits.2021.3122865

[8] N. F. Rajani, B. McCann, C. Xiong, and R. Socher, “Explain yourself! leveraging language
models for commonsense reasoning,” 2019.

[9] X. Wang, G. Chen, G. Qian, P. Gao, X.-Y. Wei, Y. Wang, Y. Tian, and W. Gao, “Large-scale
multi-modal pre-trained models: A comprehensive survey,” 2023.

[10] E. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, L. Wang, and W. Chen, “Lora: Low-rank
adaptation of large language models,” 2021.

[11] M. Bansal, A. Krizhevsky, and A. Ogale, “Chauffeurnet: Learning to drive by imitating the best
and synthesizing the worst,” arXiv preprint arXiv:1812.03079, 2018.

[12] J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid, “Vectornet: Encoding hd
maps and agent dynamics from vectorized representation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp. 11 525–11 533.

[13] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,” Advances in
neural information processing systems, vol. 1, 1988.

[14] A. Hu, G. Corrado, N. Griffiths, Z. Murez, C. Gurau, H. Yeo, A. Kendall, R. Cipolla,
and J. Shotton, “Model-based imitation learning for urban driving,” in Advances
in Neural Information Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh, Eds., vol. 35. Curran Associates, Inc., 2022, pp.
20 703–20 716. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2022/file/
827cb489449ea216e4a257c47e407d18-Paper-Conference.pdf

https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21918
https://doi.org/10.1109%2Ftits.2021.3122865
https://proceedings.neurips.cc/paper_files/paper/2022/file/827cb489449ea216e4a257c47e407d18-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/827cb489449ea216e4a257c47e407d18-Paper-Conference.pdf

[15] A. Barredo Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado,
S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, and F. Herrera, “Explainable
artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward
responsible ai,” Information Fusion, vol. 58, pp. 82–115, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1566253519308103

[16] W. Xu, “From automation to autonomy and autonomous vehicles: Challenges and opportunities
for human-computer interaction,” Interactions, vol. 28, no. 1, p. 48–53, dec 2020. [Online].
Available: https://doi.org/10.1145/3434580

[17] A. Holzinger, A. Saranti, C. Molnar, P. Biecek, and W. Samek, Explainable AI Methods -
A Brief Overview. Cham: Springer International Publishing, 2022, pp. 13–38. [Online].
Available: https://doi.org/10.1007/978-3-031-04083-2_2

[18] M. T. Ribeiro, S. Singh, and C. Guestrin, “" why should i trust you?" explaining the predictions
of any classifier,” in Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, 2016, pp. 1135–1144.

[19] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,” Advances
in neural information processing systems, vol. 30, 2017.

[20] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important features through propagating
activation differences,” in International conference on machine learning. PMLR, 2017, pp.
3145–3153.

[21] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam: Visual
explanations from deep networks via gradient-based localization,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 618–626.

[22] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional networks: Visualising
image classification models and saliency maps,” arXiv preprint arXiv:1312.6034, 2013.

[23] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio,
“Show, attend and tell: Neural image caption generation with visual attention,” in International
conference on machine learning. PMLR, 2015, pp. 2048–2057.

[24] J. Kim and J. Canny, “Interpretable learning for self-driving cars by visualizing causal attention,”
2017.

[25] J. Kim, A. Rohrbach, T. Darrell, J. Canny, and Z. Akata, “Textual explanations for self-driving
vehicles,” 2018.

[26] M. A. Kühn, D. Omeiza, and L. Kunze, “Textual explanations for automated commentary
driving,” arXiv preprint arXiv:2304.08178, 2023.

[27] S. Jain and B. C. Wallace, “Attention is not explanation,” arXiv preprint arXiv:1902.10186,
2019.

[28] Y. Qiang, D. Pan, C. Li, X. Li, R. Jang, and D. Zhu, “Attcat: Explaining transformers via
attentive class activation tokens,” in Advances in Neural Information Processing Systems, 2022.

[29] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and I. Sutskever, “Learning transferable visual models from
natural language supervision,” 2021.

[30] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Millican,
M. Reynolds, R. Ring, E. Rutherford, S. Cabi, T. Han, Z. Gong, S. Samangooei, M. Monteiro,
J. Menick, S. Borgeaud, A. Brock, A. Nematzadeh, S. Sharifzadeh, M. Binkowski, R. Barreira,
O. Vinyals, A. Zisserman, and K. Simonyan, “Flamingo: a visual language model for few-shot
learning,” 2022.

[31] J. Li, D. Li, S. Savarese, and S. Hoi, “Blip-2: Bootstrapping language-image pre-training with
frozen image encoders and large language models,” 2023.

https://www.sciencedirect.com/science/article/pii/S1566253519308103
https://doi.org/10.1145/3434580
https://doi.org/10.1007/978-3-031-04083-2_2

[32] OpenAI, “Gpt-4 technical report,” 2023.

[33] R. Girdhar, A. El-Nouby, Z. Liu, M. Singh, K. V. Alwala, A. Joulin, and I. Misra, “Imagebind:
One embedding space to bind them all,” 2023.

[34] M. Hasanujjaman, M. Z. Chowdhury, and Y. M. Jang, “Sensor fusion in autonomous vehicle
with traffic surveillance camera system: Detection, localization, and ai networking,” Sensors,
vol. 23, no. 6, 2023. [Online]. Available: https://www.mdpi.com/1424-8220/23/6/3335

[35] J. Roh, C. Paxton, A. Pronobis, A. Farhadi, and D. Fox, “Conditional driving from natural
language instructions,” in Conference on Robot Learning. PMLR, 2020, pp. 540–551.

[36] J. Kim, S. Moon, A. Rohrbach, T. Darrell, and J. Canny, “Advisable learning for self-driving ve-
hicles by internalizing observation-to-action rules,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2020.

[37] B. Jin, X. Liu, Y. Zheng, P. Li, H. Zhao, T. Zhang, Y. Zheng, G. Zhou, and J. Liu, “Adapt:
Action-aware driving caption transformer,” 2023.

[38] J. Roh, K. Desingh, A. Farhadi, and D. Fox, “Languagerefer: Spatial-language model for 3d
visual grounding,” in Conference on Robot Learning. PMLR, 2022, pp. 1046–1056.

[39] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,
A. Dubey, C. Finn, P. Florence, C. Fu, M. G. Arenas, K. Gopalakrishnan, K. Han, K. Hausman,
A. Herzog, J. Hsu, B. Ichter, A. Irpan, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, I. Leal,
L. Lee, T.-W. E. Lee, S. Levine, Y. Lu, H. Michalewski, I. Mordatch, K. Pertsch, K. Rao,
K. Reymann, M. Ryoo, G. Salazar, P. Sanketi, P. Sermanet, J. Singh, A. Singh, R. Soricut,
H. Tran, V. Vanhoucke, Q. Vuong, A. Wahid, S. Welker, P. Wohlhart, J. Wu, F. Xia, T. Xiao,
P. Xu, S. Xu, T. Yu, and B. Zitkovich, “Rt-2: Vision-language-action models transfer web
knowledge to robotic control,” in arXiv preprint arXiv:2307.15818, 2023.

[40] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization
algorithms,” 2017.

[41] K. Renz, K. Chitta, O.-B. Mercea, A. S. Koepke, Z. Akata, and A. Geiger, “Plant: Explainable
planning transformers via object-level representations,” 2022.

[42] F. Gilardi, M. Alizadeh, and M. Kubli, “Chatgpt outperforms crowd-workers for text-annotation
tasks,” 2023.

[43] Y. Wang, Y. Kordi, S. Mishra, A. Liu, N. A. Smith, D. Khashabi, and H. Hajishirzi, “Self-instruct:
Aligning language model with self generated instructions,” 2022.

[44] H. Liu, C. Li, Q. Wu, and Y. J. Lee, “Visual instruction tuning,” 2023.

[45] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample, “Llama: Open and
efficient foundation language models,” 2023.

[46] A. Jaegle, S. Borgeaud, J.-B. Alayrac, C. Doersch, C. Ionescu, D. Ding, S. Koppula, D. Zoran,
A. Brock, E. Shelhamer, et al., “Perceiver io: A general architecture for structured inputs &
outputs,” arXiv preprint arXiv:2107.14795, 2021.

[47] J. Fu, S.-K. Ng, Z. Jiang, and P. Liu, “Gptscore: Evaluate as you desire,” 2023.

[48] J. Wang, Y. Liang, F. Meng, Z. Sun, H. Shi, Z. Li, J. Xu, J. Qu, and J. Zhou, “Is chatgpt a good
nlg evaluator? a preliminary study,” 2023.

[49] Y. Liu, D. Iter, Y. Xu, S. Wang, R. Xu, and C. Zhu, “G-eval: Nlg evaluation using gpt-4 with
better human alignment,” 2023.

[50] F. Codevilla, A. M. López, V. Koltun, and A. Dosovitskiy, “On offline evaluation of vision-based
driving models,” 2018.

https://www.mdpi.com/1424-8220/23/6/3335

[51] T. Y. Zhuo, Y. Huang, C. Chen, and Z. Xing, “Exploring ai ethics of chatgpt: A diagnostic
analysis,” 2023.

[52] M. Toromanoff, E. Wirbel, and F. Moutarde, “End-to-end model-free reinforcement learning
for urban driving using implicit affordances,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 7153–7162.

Appendix A Perceiver-BC model

In order to assess the proficiency of leveraging the reasoning ability of pretrained Large Language
Models (LLMs) in driving tasks, such as action prediction, we decided to conduct additional experi-
ments using a simple Perceiver-BC model for comparison purposes. We’ve detailed the implementa-
tion process in Figure 5.

The Perceiver-BC model includes the identical Vector Encoder and Vector Former modules as those
in the LLM agent model. However, it differs in that it employs a perceiver-based policy module
instead of the LLM with adapters. To maintain an equitable comparison, we’ve calibrated the BC
model to possess a similar number of trainable parameters to the LLM agent, totaling approximately
25 million trainable parameters.

The Perceiver-BC model was trained using the same 10k dataset that we used for the LLM Agent.
This dataset included only captioning and action data. We trained the Perceiver-BC model for 5
epochs, just like the LLM Agent. We have reported the results of these evaluations in Table 1.

Figure 5: The architecture of the behaviour cloning baseline

Appendix B Additional Results

We include here more results DrivingQA results in Figure 6 and Figure 7, including some failure
cases.

Figure 6: More drivingQA results

Figure 7: More drivingQA results and failure cases (last two)

B.1 Design of the Object-level Vector Representation

In order to effectively translate the intricacies of autonomous driving into a format that a Large
Language Model (LLM) can understand and work with, we have designed an object-level vector
representation. This allows us to represent a variety of crucial aspects of driving conditions, such as
the intended route, nearby vehicles, pedestrian presence, and the state of the ego vehicle, using a set
of compact object-level vectors.

Our object-level vectors contain semantically significant attributes. This allows us to further create
structured language labels from the vector representation. This process turns complex driving
situations into a language format that the Large Language Model (LLM) can understand. This enables
the LLM to make sense of driving conditions, make decisions, and even generate outputs that can be
explained, based on its own internal reasoning.

The schema below provides more details about each aspect represented in our vector input system:

A 2d array per ego vehicle describing the route to follow.
It finds route points for each vehicle. Each point goes into a new row,
then each point have the following attributes:
- (x, y, z) of a point
- its direction
- pitch
- speed limit
- is junction?
- width of the road
- is traffic light and its state
- is give way?
- is a roundabout?
route_descriptors: torch.FloatTensor

A 2d array per ego vehicle describing nearby vehicles.
First, if finds nearby vehicle in the neighbourhood of the car.
Then allocates an array of zeros a fixed max size (about 30).
There is a logic that tries to fit dynamic and static vehicles into
rows of that array.
For every vehicle:
- "1" for marking that a vehicle is found in the row
(empty rows will have this still "0")
- Is it dynamic or static (parked) vehicle
- its speed
- its relative position in the ego coordinates
- its relative orientation
- its pitch
- its size
- vehicle class
- positions of its 4 corners
vehicle_descriptors: torch.FloatTensor

A 2d array per ego vehicle describing pedestrians.
First, if finds nearby pedestrians in the neighbourhood of the car.
Then allocates an array of zeros a fixed max size (about 20).
Then every found pedestrian is described in a row of that array:
- "1" for marking that a pedestrian is found in the row
(empty rows will have this still "0")
- ped. speed
- its relative position in the ego coordinates (x, y, z)
- its relative orientation
- pedestrian type
- intent of crossing the road
pedestrian_descriptors: torch.FloatTensor

A 1D array per ego vehicle describing its state. Specifically,
- VehicleDynamicsState (acc, steering, pitch ..)
- Vehicle size
- Vehicle class
- Vehicle dynamics type
- Previous action
- 2 lidar distance arrays, placed on the front corner of the vehicle
ego_vehicle_descriptor: torch.FloatTensor

B.2 RL expert

In this section we describe how we trained the reinforcement learning agent used to collect data in a
diverse set of driving scenarios.

The agent maps a set of object-level vectors, described in section B.1, to actions executable by the
simulated vehicle dynamics. The actions of the RL agent are modelled by two independent beta
distributions, corresponding to acceleration and steering wheel angle. We partition the acceleration
value x ∈ [0; 1], sampled from the beta distribution, into accelerator pedal and brake pressure:

Accel = s1 max{0; 2x− 1}
BrakePressure = s2 max{0; 1− 2x}

where s1 and s2 scale the values to the respective output ranges. The three values accelerator pedal,
brake pressure, and steering wheel angle are then fed into our vehicle dynamics simulation that
closely matches our real world vehicles.

To learn the action distributions, we chose Proximal Policy Optimization [40] as a reinforcement
learning algorithm due to its simplicity, widespread usage, and robustness. In each epoch of training
we run the simulation with the agent in closed-loop and obtain a replay buffer. Note that we control
multiple vehicles simultaneously, which allows us to generate a replay buffer with 100 to 200 thousand
samples very efficiently. We then retrieve batches from that replay buffer and optimize the neural
network using the PPO objective. After that, the replay buffer is discarded, and we begin the next
epoch. We run this procedure for 10 thousand steps.

As the neural architecture, we use Perceiver IO [46]. The advantage of this architecture lies in
its flexibility to deal with different input and output types. Input vectors from the simulator are
preprocessed into tokens using multi-layer perceptrons with ReLU non-linearity, which are then
fed into the cross-attention mechanism. Two output queries of the Perceiver are used to predict
acceleration and steering wheel distributions, respectively. An additional output query predicts a
value estimate.

The reward during training is given by the following formula, which is based on the rewards described
in [52].

R = β1

(
1− |v − vdesired|

vs

)
︸ ︷︷ ︸

Desired speed

− β2dlateral︸ ︷︷ ︸
Lane distance

−β3αangle︸ ︷︷ ︸
Lane angle

−β4
(ϕt − ϕt−1)

2

ϕs︸ ︷︷ ︸
Erratic steering penalty

+ Rfailed to stop︸ ︷︷ ︸
Stopping penalty

(1)

where v is the vehicle speed, vdesired is a desired speed heuristic (described below), dlateral is the
distance from vehicle centre to closest lane centre, αangle is the angle between vehicle and closest lane
tangent, ϕt and ϕt−1 are steering wheel angle actions from the current and previous time step, and
Rfailed to stop is another heuristic for yielding the right-of-way. β1, β2, β3, and β4 are hyper-parameters
and vs and ϕs are velocity and steering wheel scales.

The desired speed vdesired serves as a heuristic for determining the optimal speed in various situations.
We address cases where the agent is in a junction, near another vehicle, at a traffic light, close to a
pedestrian, or trailing a lead vehicle. For each of these situations, we establish a heuristic, and the
final desired speed is selected as the minimum among them.

The failed to stop heuristic ensures the agent stops appropriately. It is given by

Rfailed to stop =

{
−v if the agent is close to a give way sign and v > 2m/s

0 otherwise
(2)

	Introduction
	Related Works
	End-to-End Autonomous Driving Systems
	Interpretability of Autonomous Driving Systems
	Multi-modal LLMs in Driving Tasks

	Method
	Data Collection using RL experts
	Structured Language Generation for Pseudo Vector Captioning
	Driving QA Dataset Labeling
	Training the Driving LLM Agent
	Vector Representation Pre-training
	Driving QA Finetuning

	Evaluation and Results
	Evaluation of Perception and Action Prediction
	Evaluation of Driving QA

	Conclusion and Limitations
	Ethical Implications and Broader Impact
	Perceiver-BC model
	Additional Results
	Design of the Object-level Vector Representation
	RL expert

