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Abstract— We demonstrate the first application of deep
reinforcement learning to autonomous driving. From randomly
initialised parameters, our model is able to learn a policy for
lane following in a handful of training episodes using a single
monocular image as input. We provide a general and easy to
obtain reward: the distance travelled by the vehicle without
the safety driver taking control. We use a continuous, model-
free deep reinforcement learning algorithm, with all exploration
and optimisation performed on-vehicle. This demonstrates a
new framework for autonomous driving which moves away
from reliance on defined logical rules, mapping, and direct
supervision. We discuss the challenges and opportunities to scale
this approach to a broader range of autonomous driving tasks.

I. INTRODUCTION

Autonomous driving is a topic that has gathered a great
deal of attention from both the research community and
companies, due to its potential to radically change mobility
and transport. Broadly, most approaches to date focus on
formal logic which define driving behaviour in annotated
3D geometric maps. This can be difficult to scale, as it
relies heavily on external mapping infrastructure rather than
primarily using an understanding of the local scene.

In order to make autonomous driving a truly ubiquitous
technology, we advocate for robotic systems which address
the ability to drive and navigate in absence of maps and
explicit rules, relying - just like humans - on a comprehensive
understanding of the immediate environment [1] while fol-
lowing simple higher level directions (e.g., turn-by-turn route
commands). Recent work in this area has demonstrated that
this is possible on rural country roads, using GPS for coarse
localisation and LIDAR to understand the local scene [2].

In the recent years, reinforcement learning (RL) – a ma-
chine learning subfield focused on solving Markov Decision
Problems (MDP) [3] where an agent learns to select actions
in an environment in an attempt to maximise some reward
function – has shown an ability to achieve super-human
results at games such as Go [4] or chess [5], a great deal of
potential in simulated environments like computer games [6],
and on simple tasks with robotic manipulators [7]. We argue
that the generality of reinforcement learning makes it a
useful framework to apply to autonomous driving. Most
importantly, it provides a corrective mechanism to improve
learned autonomous driving behaviour.

To this end, in this paper we:
1) pose autonomous driving as an MDP, explain how

to design the various elements of this problem to
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Fig. 1: We design a deep reinforcement learning algorithm
for autonomous driving. This figure illustrates the actor-
critic algorithm which we use to learn a policy and value
function for driving. Our agent maximises the reward of
distance travelled before intervention by a safety driver.
A video of our vehicle learning to drive is available at
https://wayve.ai/blog/l2diad

make it simpler to solve, whilst keeping it general and
extensible,

2) show that a canonical RL algorithm (deep determin-
istic policy gradients [8]) can rapidly learn a simple
autonomous driving task in a simulation environment,

3) discuss the system set-up required to make learning to
drive efficient and safe on a real-world vehicle,

4) learn to drive a real-world autonomous vehicle in a
few episodes with a continuous deep reinforcement
learning algorithm, using only on-board computation.

We therefore present the first demonstration of a deep
reinforcement learning agent driving a real car.

II. RELATED WORK

We believe this is the first work to show that deep
reinforcement learning is a viable approach to autonomous
driving. We are motivated by its potential to scale beyond
that of imitation learning, and hope the research community
examines autonomous driving from a reinforcement learning
perspective more closely. The closest work in the current lit-
erature can predominantly be categorised as either imitation
learning or classical approaches relying on mapping.

a) Mapping approaches: Since early examples [9],
[10], autonomous vehicle systems have been designed to
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navigate safely through complex environments using ad-
vanced sensing and control algorithms [11], [12], [13]. These
systems are traditionally composed of many specific inde-
pendently engineered components, such as perception, state
estimation, mapping, planning and control [14]. However,
because each component needs to be individually specified
and tuned, this can be difficult to scale to more difficult
driving scenarios due to complex interdependencies.

Significant effort has been focused on computer vision
components for this modular approach. Localisation such
as [15] facilitates control of the vehicle [16] within the
mapped environment, while perception methods such as
semantic segmentation [1] enable the robot to interpret the
scene. These modular tasks are supported by benchmarks
such as [17] and [18].

These modular mapping approaches are largely the focus
of commercial efforts to develop autonomous driving sys-
tems; however, they present an incredibly complex systems
engineering challenge, which has yet to be solved.

b) Imitation learning: A more recent approach to some
driving tasks is imitation learning [19], [20], which aims to
learn a control policy by observing expert demonstrations.
One important advantage of this approach is that it can
use end-to-end deep learning, optimising all parameters of
a model jointly with respect to an end goal thus reducing
the effort of tuning of each component. However, imitation
learning is also challenging to scale. It is impossible to
obtain expert examples to imitate for every potential scenario
an agent may encounter, and it is challenging to deal with
distributions of demonstrated policies (e.g., driving in each
lane).

c) Reinforcement learning: Reinforcement learning is
a broad class of algorithms for solving Markov Decision
Problems (MDPs) [21]. An MDP consists of:
• a set S of states,
• a set A of actions,
• a transition probability function p : S × A → P(S),

which to every pair (s, a) ∈ S ×A assigns a probabil-
ity distribution p(·|s, a) representing the probability of
entering a state from state s using action a,

• a reward function R : S ×S ×A → R, which describes
the reward R(st+1, st, at) associated with entering state
st+1 from state st using action at,

• a future discount factor γ ∈ [0, 1] representing how
much we care about future rewards.

The solution of an MDP is a policy π : S → A that for
every s0 ∈ S maximises:

Vπ(s0) = E

( ∞∑
t=0

γtR(st+1, st, π(st))

)
, (1)

where the expectation is taken over states st+1 sampled
according to p(st+1|st, π(st)).

In our setting, we use a finite time horizon T in place of
infinity in the above formula. This is equivalent to one of
the states being terminal, i.e. it cannot be escaped and any
action at that state gives zero reward.

Rearranging the above equation into a recurrent form, we
get one of the two Bellman equations:

Vπ(s0) = E
(
R(s1, s0, π(s0)) + γVπ(s1)

)
. (2)

Here the expectation is taken only over s1 sampled ac-
cording to p(s1|s0, π(s0)). For reference, let us present the
other Bellman equation:

Qπ(s0, a0) = E
(
R(s1, s0, a0) + γQπ(s1, π(s1))

)
, (3)

where Qπ(s0, a0) is the expected cumulative discounted
reward received while starting from state s0 with action a0
and following policy π thereafter. Again the expectation is
taken over s1 sampled according to p(s1|s0, a0)

In other words, reinforcement learning algorithms aim
to learn a policy π that obtains a high cumulative reward.
They are generally split into two categories: model-based and
model-free reinforcement learning. In the former approach,
explicit models for the transition and reward functions are
learnt, and then used to find a policy that maximises cumu-
lative reward under those estimated functions. In the latter,
we directly estimate the value Q(s, a) of taking action a in
state s, and then follow a policy that selects the action with
the highest estimated value in each state.

Model-free reinforcement learning is extremely general.
Using it, we can (in theory) learn any task we can imagine,
whereas model-based algorithms can be only as good as the
model learned. On the other hand, model-based methods tend
to be more data-efficient than model-free ones. For further
discussion, see [22].

In autonomous driving, deep learning has been used
to learn dynamics models for model-based reinforcement
learning using off-line data [23]. Reinforcement learning has
also been used to learn autonomous driving agents in video
games. However, this can simply the problem, with access
to ground truth reward signals which are not available in the
real-world, such as the angle of the car to the the lane [8].

The closest work to this paper is from Riedmiller et
al. [24] who train a reinforcement learning agent which
drives a vehicle to follow a GPS trajectory in an obstacle-free
environment. They demonstrate learning on-board the vehicle
using a dense reward function based on GPS thresholded
tracking error. We build on this work in a number of ways;
we demonstrate learning to drive with deep learning, from
an image-based input, using a sparse reward function to lane
follow.

III. SYSTEM ARCHITECTURE

A. Driving as a Markov Decision Process

A key focus of this paper is the set-up of driving as an
MDP. Our goal is that of autonomous driving, and the exact
definition of the state space S, action space A and reward
function R are free for us to be defined. The transition model
is implicitly fixed once a state and action representation
is fixed, with the remaining degrees of freedom – the



transitions themselves – dictated by the mechanics of the
simulator/vehicle used.

a) State space: Key to defining the state space is the
definition of the observations Ot that the algorithm receives
at each time step. Many sensors have been developed in order
to provide sophisticated observations for driving algorithms,
not limited to LIDAR, IMUs, GPS units and IR depth
sensors; an endless budget could be spent on advanced
sensing technology. In this paper, we show that for simple
driving tasks it is sufficient to use a monocular camera image,
together with the observed vehicle speed and steering angle.
Theoretically, state st is to be a Markov representation of
all previous observations. An approximation a fixed length
approximately Markov state could be obtained by, for ex-
ample, using a Recurrent Neural Network to recursively
combine observations. However, for the tasks we consider,
the observation itself serves as a good enough approximation
of the state.

A second consideration is how to treat the image itself: the
raw image could be fed directly into the reinforcement learn-
ing algorithm through a series of convolutions [25]; alterna-
tively, a small compressed representation of the image, using,
for example, a Variational Autoencoder (VAE) [26] [27],
could be used. We compare the performance of reinforcement
learning using these two approaches in Section IV. In our
experiments, we train the VAE online from five purely
random exploration episodes, using a KL loss and a L2
reconstruction loss [27].

b) Action space: Driving itself has what one might
think are a natural set of actions: throttle, brake, signals
etc. But what domain should the output of the reinforcement
learning algorithm be? The throttle itself can be described as
discrete, either on or off, or continuous, in a range isometric
to [0, 1]. An alternative is to reparameterise the throttle in
terms of a speed set-point, with throttle output by a classical
controller in an attempt to match the set-point. Overall,
experiments on a simple simulator (Section IV-A) showed
that continuous actions, whilst somewhat harder to learn,
provide for a smoother controller. We use a two-dimensional
action space; steering angle in the range [-1, 1] and speed
setpoint in km/h.

c) Reward function: Design of reward functions can
approach supervised learning – given a lane classification
system, a reward to learn lane-following can be set up in
terms of minimising the predicted distance from centre of
lane, the approach taken in [8]. This approach is limited
in scale: the system can only be as good as the human
intuition behind the hand-crafted reward. We do not take this
approach. Instead, we define the reward as forward speed
and terminate an episode upon an infraction of traffic rules
– thus the value of a given state V (st) corresponds to the
average distance travelled before an infraction. A fault that
may be identified is that the agent may choose to avoid more
difficult manoeuvres, e.g. turning right in the UK (left in US).
Command conditional rewards may be utilised in future work
to avoid this.

B. Reinforcement Learning Algorithm – Deep Deterministic
Policy Gradients

We selected a simple continuous action domain model-free
reinforcement learning algorithm: deep deterministic policy
gradients (DDPG) [8], to show that an off-the-shelf reinforce-
ment learning algorithm with no task-specific adaptation is
capable of solving the MDP posed in Section III-A.

DDPG consists of two function approximators: a critic
Q : S × A → R, which estimates the value Q(s, a) of the
expected cumulative discounted reward upon using action a
in state s, trained to satisfy the Bellman equation

Q(st, at) = rt+1 + γ(1− dt)Q(st+1, π(st+1)),

under a policy given by the actor π : S → A, which attempts
to estimate a Q-optimal policy π(s) = argmaxaQ(s, a); here
(st, at, rt+1, dt+1, st+1) is an experience tuple, a transition
from state st to st+1 using action at and receiving reward
rt+1 and “done” flag dt+1, selected from a buffer of past
experiences. The error in the Bellman equality, which the
critic attempts to minimise, is termed the temporal difference
(TD) error. Many variants of actor-critic methods exist, see
e.g. [28], [29].

DDPG training is done online. Beyond the infrastructure
of setting up such a buffer for use on a real vehicle (which
requires it to be tolerant of missing/faulty episodes and any-
time stoppable), reinforcement learning can be sped up by
selecting the most “informative” examples from the replay
buffer. We do so using a commonly established method
called prioritised experience replay [30]: we sample expe-
rience tuples with probability proportional to the TD error
made by the critic. The weights used for this sampling are
updated upon each optimisation step with minimal overhead;
new samples are given infinite weight to ensure all samples
are seen at least once.

DDPG is an off-policy learning algorithm, meaning that
actions performed during training come from a policy distinct
from the learn optimal policy by the actor. This happens
in order to gain diverse state-action data outside of the
narrow distribution that would be seen by the optimal policy,
and thus increase robustness. We use a standard method of
achieving this in the context of continuous reinforcement
learning methods: our exploration policy is formed by adding
discrete Ornstein-Uhlenbeck process noise [31] to the opti-
mal policy. Therefore, at each step we add to optimal actions
noise xt given by:

xt+1 = xt + θ(µ− xt) + σεt, (4)

where θ, µ, σ are hyperparameters and {εt}t are i.i.d. random
variables sampled from the normal distribution N(0, 1).
These parameters need to be tuned carefully, as there is
a direct trade-off between noise utility and comfort of the
safety driver. Strongly mean reverting noise with lower
variance is easier to anticipate, whilst higher variance noise
provides better state-action space coverage.



1: while True do
2: Request task
3: Waiting for environment reset
4: if task is train then
5: Run episode with noisy policy
6: if exploration time is over then
7: Optimise model
8: end if
9: else if task is test then

10: Run episode with optimal policy
11: else if task is undo then
12: Revert previous train/test task
13: else if task is done then
14: Exit experiment
15: end if
16: end while

(a) Task-based workflow for on-vehicle training
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(b) Policy execution architecture, used to run episodes during model
training or testing.

Fig. 2: Outline of the workflow and the architecture for efficiently training the algorithm from a safety driver’s feedback.

C. Task-based Training Architecture

Deployment of a reinforcement learning algorithm on a
full-sized robotic vehicle running in a real world environ-
ment requires adjustment of common training procedures, to
account for both driver intervention and external variables
affecting the training.

We structure the architecture of the algorithm as a simple
state machine, outlined in Figure 2a, in which the safety
driver is in control of the different tasks. We define four
tasks: train, test, undo and done. The definition of these
tasks allows the system to be both interactive and stateful,
favouring an on-demand execution of episodes instead of an
a priori fixed schedule.

The train and test tasks allow us to interact with the
vehicle in autonomous mode, executing the current policy.
The difference between the two tasks consists in noise being
added to the model output and the model being optimised
in training tasks, whereas test tasks run directly the model
output actions. During early episodes, we skip optimisation
to favour exploration of the state space. We continue the
experiment until the test reward stops increasing.

Each episode is executed until the system detects that
automation is lost (i.e. the driver intervened). In a real world
environment, the system can not reset automatically between
episodes, unlike agents in simulation or in a constrained
environment. We require a human driver to reset the vehicle
to a valid starting state. Upon episode termination, while
the safety driver performs this reset, the model is being
optimised, minimising the time spent between episodes.

The undo and done tasks depict the key differences in
the architecture. The system may terminate an episode for a
variety of valid reasons other than failing to drive correctly:
these episodes can not be considered for the purposes of
training. The undo task is introduced for this reason, as it
allows us to undo the episode and restore the model as it
was before running that episode. A common example in our

experiments is encountering other drivers seeking to use the
road being used as the environment. The done task allows us
to gracefully exit the experiment at any given moment, and
is helpful since the procedure is interactive and it doesn’t
run for a fixed number of episodes.

IV. EXPERIMENTS

The main task we use to showcase the vehicle is that of
lane-following; this is the same task as addressed in [8],
however done on a real vehicle as well as on simulation, and
done from image input, without knowledge of lane position.
It is a task core to driving, and was the cornerstone of
the seminal ALVINN [19]. We first accomplish this task in
simulation in Section IV-A, and then use these results and
knowledge of appropriate hyperparameters to demonstrate a
solution on a real vehicle in Section IV-B.

For both simulation and real-world experiments we use
a small convolutional neural network. Our model has four
convolutional layers, with 3 × 3 kernels, stride of 2 and
16 feature dimensions, shared between the actor and critic
models. We then flatten the encoded state and concatenate
the vector the scalar state for the actor, additionally concate-
nating the actions for the critic network. For both networks
we then apply one fully-connected layer with feature size 8
before regressing to the output. For the VAE experiments, a
decoder of the same size as the encoder is used, replacing
strided convolution with transposed convolution to upsample
the features. A graphical depiction is shown in Figure 1.

A. Simulation

To test reinforcement learning algorithms in the context of
lane following from image inputs we developed a 3D driving
simulator, using Unreal Engine 4. It contains a generative
model for country roads, supports varied weather conditions
and road textures, and will in the future support more
complex environments (see Figure 3 for game screenshots).



Fig. 3: Examples of different road environments randomly
generated for each episode in our lane following simulator.
We use procedural generation to randomly vary road texture,
lane markings and road topology each episode. We train
using a forward facing driver-view image as input.

The simulator proved essential for tuning reinforcement
learning parameters including: learning rates, number of
gradient steps to take following each training episode and
the correct termination procedure – conservative termination
leads to a better policy. It confirmed a continuous action
space is preferable – discrete led to a jerky policy – and
that DDPG is a suitable reinforcement learning algorithm.
As described in the environment setup in Section III-A,
reward granted in the simulator corresponded to the distance
travelled before exiting lane, with new episodes resetting the
car to the centre of the lane.

We found that we could reliably learn to learn follow
in simulation from raw images within 10 training episodes.
Furthermore, we found little advantage to using a compressed
state representation (provided by a Variational Autoencoder).
We found the following hyperparameters to be most effec-
tive, which we use for our real world experiments: future
discount factor of 0.9, noise half-life of 250 episodes, noise
parameters of θ of 0.6 and σ of 0.4, 250 optimisation steps
between episodes with batch size 64 and gradient clipping
of 0.005.

B. Real-world driving

Our real world driving experiments mimic in many ways
those conducted in simulation. However, executing this ex-
periment in the real world is significantly more challenging.
Many environmental factors cannot be controlled, and real-
time safety and control systems must be implemented. For
these experiments, we use a 250 meter section of road. The
car begins at the start of the road to commence training
episodes. When the car deviates from the lane and enters
an unrecoverable position, the safety driver takes control of
the vehicle ending the episode. The vehicle is then returned
to the center of the lane to begin the next episode. We use
the same hyperparameters that we found to be effective in
simulation, with the noise model adjusted to give vehicle
behaviour similar to that in simulation under the dynamics
of the vehicle itself.

We conduct our experiments using a modified Renault
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Fig. 4: Using a VAE with DDPG greatly improves data
efficiency in training over DDPG from raw pixels, suggesting
that state representation is an important consideration for
applying reinforcement learning on real systems. The 250m
driving route used for our experiments is shown on the right.

Twizy vehicle, which is a two seater electric vehicle, shown
in Figure 1. The vehicle weighs 500kg, has a top speed of
80 km/h and has a range of 100km on a single battery
charge. We use a single monocular forward-facing video
camera mounted in the centre of the roof at the front of
the vehicle. We use retrofitted electric motors to actuate the
brake and steering, and electronically emulate the throttle
position to regulate torque to the wheels. All computation is
done on-board using a single NVIDIA Drive PX2 computer.
The vehicle’s drive-by-wire automation automatically disen-
gages if the safety driver intervenes, either by using vehicle
controls (brake, throttle, or steering), toggling the automation
mode, or pressing the emergency stop. An episode would
terminate when either speed exceeded 10km/h, or drive-by-
wire automation disengaged, indicating the safety driver has
intervened. The safety driver would then reset the car to the
centre of the road and continue with the next episode.

Table I shows the results of these experiments. Here, the
major finding is that reinforcement learning can solve this
problem in a handful of trials. Using 250 optimisation steps
with batch size 64 took approximately 25 seconds, which
made the experiment extremely manageable, considering
manoeuvring the car to the centre of the lane to commence
the next episode takes approximately 10 seconds anyway. We
also observe in the real world, where the visual complexity
is much more difficult than simulation, a compressed state
representation provided by a Variational Autoencoder trained
online together with the policy greatly improved reliability
of the algorithm. We compare our method to a zero policy
(driving straight with constant speed) and random exploration
noise, in order to confirm that the trial indeed required a non-
trivial policy. 1

V. DISCUSSION

This work presents the first application of deep rein-
forcement learning to a full sized autonomous vehicle. The

1A video of the training process for our vehicle learning to drive the 250m
length of private road with the stateful RL training architecture (Section III-
C) is available at https://wayve.ai/blog/l2diad

https://wayve.ai/blog/l2diad


Training Test
Model Episodes Distance Time Meters per Disengagement # Disengagements
Random Policy - - - 7.35 34
Zero Policy - - - 22.7 11
Deep RL from Pixels 35 298.8 m 37 min 143.2 1
Deep RL from VAE 11 195.5 m 15 min - 0

TABLE I: Deep reinforcement learning results on an autonomous vehicle over a 250m length of road. We report the best
performance for each model. We observe the baseline RL agent can learn to lane follow from scratch, while the VAE variant
is much more efficient, learning to succesfully drive the route after only 11 training episodes.

experiments demonstrate we are able to learn to lane follow
with under thirty minutes of training – all done on on-board
computers.

In order to tune hyperparameters, we built a simple
simulated driving environment where we experimented with
reinforcement learning algorithms, maximising distance be-
fore a traffic infraction using DDPG as a canonical algorithm.
The parameters found transferred amicably to the real-world,
where we rapidly trained a policy to drive a real vehicle on
a private road, with a reward signal consisting only of speed
and termination upon control driver taking control. Notably,
this reward requires no further information or maps of the
environment. With more data, vehicles and larger models,
this framework is general enough to scale to more complex
driving tasks.

Whilst viable, this approach will require translation of
reinforcement learning research advancements, as well as
work on core reinforcement learning algorithms if it is to
become a leading approach for scaling autonomous driving.
We conclude by discussing our thoughts on the future work
required.

In this work, we present a general reward function which
asks the agent to maximise the distance travelled without
intervention from a safety driver. While this reward function
is general, it has a number of limitations. It does not consider
conditioning on a given navigation goal. Furthermore, it is
incredibly sparse. As our agent improves, interventions will
become significantly less frequent, resulting in weaker train-
ing signal. It is likely that further work is required to design
a more effective reward function to learn a super-human
driving agent. This will involve the careful consideration of
many safety [32] and ethical issues [33].

The second area for development suggested by the results
here is a better state representation. Our experiments have
shown that a simple Variational Autoencoder greatly im-
proves the performance of DDPG in the context of driving a
real vehicle. Beyond pixel-space autoencoders is a wealth of
computer vision research addressing effective compression
of images: here existing work in areas such as semantic
segmentation, depth, egomotion and pixel-flow provide an
excellent prior for what is important in driving scenes [34],
[1], [35]. This research needs to be integrated with reinforce-
ment learning approaches for real tasks, both model-free and
model-based.

However, unsupervised state encoding alone will likely not
be sufficient. In order to compress the state in a manner that
makes it simple to learn a policy with just a small number of

samples, information on which elements of the state (image
observation) are important is required. This information
should come from the reward and terminal signals. Reward
and terminal information can be incorporated in an encoding
in many ways, but one difficulty always prevails: credit
allocation. Rewards obtained at a specific time step may be
related to observations received many time-steps in the past.
Thus good models used for this application will contain a
temporal component.

Two areas that could greatly improve the availability of
data for the application of reinforcement learning to real
autonomous driving are semi-supervised learning [35] and
domain transfer [36]. Whilst only a small portion of driving
data might have rewards and terminals associated with it,
as those are costly to obtain, the image embeddings – and
perhaps other aspects of models – could benefit from driving
data captured from dashcams in every-day vehicles. These
could be used to pre-train the image autoencoder. In the con-
text of a model-based RL system, these could also be used
to approximate state transition functions, whilst advances in
semi-supervised learning might allow us to utilise this data
without reward/terminal labels data. Domain transfer, on the
other hand, may allow us to create simulations sufficiently
convincing that data from these may be used to train a policy
that can be transferred directly onto a real car.

The algorithm used here is intentionally a common canon-
ical approach, chosen to demonstrate the ease with which
reinforcement learning may be applied to driving. Many im-
provements to it have been developed in the wider literature,
including the use of natural gradients [37]. Other research has
looked at better transformation of observations into states,
typically using an RNN [38], [39], as well as methods to
perform multi-step planning, as in [40]. It is no question
that these could provide superior performance.

New advances in model-based reinforcement provide al-
ternative exciting avenues for autonomous driving research,
with work such as [22] showing outstanding performance of
models when observing directly the state of a physical sys-
tem. This could offer significant benefits to an image-based
domain. Alternative model-based approaches include [41]
which learn to simulate episodes and learn in imagination.

We hope this paper inspires more research into applying
reinforcement learning research to autonomous driving, per-
haps combining it with elements from other machine learning
techniques such as imitation learning and control theory. The
method here solved a simple driving task in half an hour –
what more could be done in a day?
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